Поговорим про геотермальную энергетику, один из самых перспективных видов возобновляемой энергетики в мире.
Возобновляемая энергетика в мире растёт высокими темпами. Ежегодные объемы ввода новых электростанций, функционирующих на основе ВИЭ, существенно превышают рост тепловой генерации. Также и размер ежегодных инвестиций в ВИЭ-генерацию в разы превосходит вложения в газовые, угольные и атомные электростанции.
При этом основной рост приходится на ветровые и солнечные электростанции, и для многих именно они стали символами ВИЭ и «зелёной» энергетики, но и геотермальные электростанции, или ГеоЭС, — также очень интересное направление, потенциал которого высок. Некоторые исследователи полагают, что в будущем геотермальная энергетика может обеспечить до 1/6 от мирового энергоснабжения.
Не в последнюю очередь из-за того, что, в отличие от солнечной или ветряной, геотермальная энергетика абсолютно не зависит от смены дня и ночи или погодных условий и времени года и имеет целый ряд других преимуществ, о которых мы и расскажем далее.
В соответствии с базой данных IRENA (Renewable capacity statistics 2019), в 2018 году глобальная установленная мощность геотермальных электростанций вросла на 540 мегаватт и составила 13 329 мегаватт.
Как и во многих видах электростанций, поток горячего пара используется для вращения турбины генератора — ГеоЭС в данном случае не уникальны. И теплоэлектростанции, и, фактически, атомные электростанции используют тот же самый принцип, хотя источники энергии, которые помогают разогревать воду и вырабатывать пар, в них применяются радикально различные. ГеоЭС относятся к ВИЭ именно потому, что в качестве главной движущей силы в них используется пар или горячая вода из естественных геотермальных источников, находящихся под землёй.
С погружением в недра планеты температура будет расти примерно на 3°C каждые 100 метров спуска, хотя в различных регионах Земли этот показатель (так называемый геотермический градиент) может отличаться. Это значит, что некоторые места подходят для постройки геотермальной электростанции лучше, а некоторые — намного хуже, вплоть до момента, когда прокапывать скважину до слоёв нужной температуры становится просто экономически невыгодно. Отсюда и популярность ГеоЭС в странах с большой сейсмической/вулканической активностью.
График изменений температуры породы по мере продвижения к центру Земли
В зависимости от имеющегося источника геотермальной энергии ГеоЭС можно условно разделить на гидротермальные, бинарные гидротермальные и петротермальные.
В гидротермальных электростанциях из трубы, проложенной до водоносных слоёв, поднимается раскалённый пар, который вращает турбину генератора. Если вместо пара поднимается пароводяная смесь температурой выше 150 °C, её водяная часть отделяется в специальном сепараторе и может в дальнейшем тоже превратиться в пар для генератора в условиях низкого давления.
Бинарные гидротермальные электростанции применяются там, где температура воды не поднимается выше 100 °C, а копать скважину глубже уже невыгодно или по каким-то причинам невозможно. Тогда эта вода используется для разогрева другой рабочей жидкости с низкой температурой кипения, например, фреона, пар от которого и подаётся на турбину генератора.
Петротермальные станции — сравнительно новое явление. В местах, где температура земной коры подходит для ГеоЭС, но водоносные слои почти отсутствуют, бурится скважина (на глубине от 3 до 10 км) и вводятся две трубы. В одну из них закачивается под давлением вода, которая разогревается в образованном давлением гидроразрыве и возвращается через вторую трубу в виде пара для турбины.
По состоянию на 2018 год в мире работало всего 22 петротермальных электростанций, большая часть которых сосредоточена в Европе. По мнению некоторых ученых, петротермальной энергии достаточно, чтобы навсегда обеспечить человечество энергией.
Главным преимуществом геотермальной энергетики является её неисчерпаемость, то есть та самая причина, по которой этот вид относят к ВИЭ. Бурение скважин, постройка геотермальных электростанций и закачка воды или использование воды/пара из геотермальных источников физически неспособны вызвать падение температуры ядра Земли или каким-то образом исчерпать этот ресурс.
Геотермальная энергетика более стабильна, чем другие виды энергетики. Она не зависит от погодных условий или времени дня, в отличие от своих более популярных «собратьев» по ВИЭ, солнечной и ветряной энергетики, или от поставок топлива, которое необходимо для работы ТЭС и АЭС. Также этот вид энергетики позволяет строить электростанции даже в труднодоступной местности и в отдалённых регионах с плохо развитой транспортной инфраструктурой.
Геотермальная энергетика, в отличие от солнечной или ветровой энергетики не требует значительных площадей для размещения объектов. Например, для выработки 1 ГВт*ч/год понадобится ГеоЭС площадью всего в 400 м2, а аналогичная солнечная станция займет более 3 квадратных километров.
При соблюдении всех условий безопасности геотермальные электростанции практически безопасны для экологии и вырабатывают очень мало углекислого газа, а вместе с электроэнергией с их помощью можно вести добычу полезных ископаемых, например, растворённые в пароводяной смеси металлы и газы.
При всех своих преимуществах у ГеоЭС есть и недостатки. Как было сказано выше, при соблюдении условий безопасности эти станции не наносят вреда экосфере, но это не отменяет того факта, что рабочая жидкость на ГеоЭС опасна и содержит тяжёлые металлы, например, свинец, мышьяк или аммиак, которые могут вызвать локальную катастрофу в случае аварии. Также ГеоЭС отличаются меньшей мощностью, чем гидроэлектростанции, ТЭС и, тем более, АЭС, а стоимость киловатта в них выше.
Это связано с тем, что, при всей простоте конструкции самих электростанций, огромные инвестиции нужны на качественную геологоразведку и анализ почвы. Примерный уровень капитальных затрат в данном сегменте находится на уровне $2800/кВт установленной мощности, что существенно выше, чем у газовых ТЭС, ветровых и солнечных электростанций.
По оценкам некоторых экспертов, потенциал геотермальных ресурсов России намного выше, чем потенциал запасов органического топлива.
Геотермальные электростанции появились в России в шестидесятые годы прошлого века. Первой начала свою работу Паужетская, а затем Паратунская ГеоЭС на Камчатке. Практически все российские ГеоЭС находятся на Камчатке и на Курилах, где сосредоточена большая часть геотермальных ресурсов страны. В частности, камчатские геотермальные ресурсы могут обеспечить электростанции мощностью до 350 МВт (хотя этот потенциал используется только частично), а ресурсы Курил позволяют вырабатывать до 230 МВт.
Помимо указанных регионов, самыми перспективными для развития геотермальной энергетики, являются Дальний Восток в целом, Кавказ, Краснодарский край и Ставрополье, где вода температурой до 126 °C выходит на поверхность под давлением, что позволяет сократить расходы на её подачу на электростанцию при помощи насосов. И это касается не только электроснабжения.
Например, в Дагестане около 30% жилого фонда отапливается и снабжается водой из геотермальных источников, причём эту цифру легко можно довести до 70%. Огромными запасами геотермальных вод (около 70% общих российских запасов) обладает Западно-Сибирский нефтегазоводоносный бассейн, большая часть ресурсов которого сосредоточена на территории Томской области.
В то же время, в центральной части страны использование ГеоЭС экономически не слишком эффективно из-за высокой глубины залегания подходящих для геотермальных электростанций термальных вод (более 2 км).
Следует отметить, что часть перспективных проектов, связанных с геотермальной энергетикой в России либо реализуется слишком медленно, либо многие годы остаётся в «замороженном» состоянии, что снижает темпы развития этого сектора в стране. Например, ещё в 2008 году, после принятия указа президента РФ №889 «О мерах по повышению энергетической и экологической эффективности российской экономики», был дан старт модернизации той самой Паужетской ГеоЭС, которая позволила бы обновить устаревшее оборудование и увеличить мощность станции на 2,5 МВт. Но, как оказалось, объект до сих пор не ввели в эксплуатацию.
По прогнозам МЭА, к 2040 году потребление и выработка электроэнергии в мире увеличатся на 60%, то есть спрос на электроэнергию составит 26,4 тыс. ТВт·ч в 2025 году и более 35,5 тыс. ТВт·ч в 2040-м.
Определенную роль в удовлетворении этого растущего спроса будет играть и геотермальная энергетика. Её рост будет стабильным, хотя вряд ли бурным.
По информации Bloomberg, в 2018 году инвестиции в геотермальную энергетику в мире выросли на 10% — до $1,8 млрд (в целом же в мире в ВИЭ было вложено более $300 млрд).
Лидерами в сфере геотермальной энергетики на данный момент являются США, также ГеоЭС очень популярны в Индонезии и на Филиппинах, где этот вид энергетики вырабатывает более 10% электроэнергии. Также в десятку мировых лидеров в области геотермальной энергетики входит Япония, в которой первая такая электростанция открылась ещё в 1966 году на базе оборудования Toshiba. Потенциал сектора в стране оценивается в 23 ГВт.
В целом же геотермальная энергетика — интересная и перспективная сфера ВИЭ. Она только начала показывать свои настоящие возможности, но уже сейчас имеет ряд неоспоримых преимуществ, которых лишены солнечная и ветряная отрасли, а также традиционные виды электростанций. опубликовано econet.ru
Подписывайтесь на наш канал Яндекс Дзен!
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet
Источник: https://econet.ru./
Понравилась статья? Напишите свое мнение в комментариях.
Добавить комментарий